Frame discrimination training for HMMs for large vocabulary speech recognition
نویسندگان
چکیده
This report describes the implementation of a discriminative HMM parameter estimation technique known as Frame Discrimination (FD) for large vocabulary speech recognition, and reports improvements in accuracy over ML-trained and MMI-trained models. Features of the implementation include the use of an algorithm called the Roadmap algorithm which selects the most important Gaussians for a given input frame without calculating every Gaussian probability in the system, a new distance measure between Gaussian based on overlap (which is used in the Roadmap algorithm), and an investigation of improvements to the Extended Baum-Welch formulae. Frame Discrimination estimation is found to give error rates at least as good as MMI with considerably less computational effort.
منابع مشابه
Frame Discrimination Training of Hmms for Large Vocabulary Speech Recognition
This report describes the implementation of a discriminative HMM parameter estimation technique known as Frame Discrimination (FD) for large vocabulary speech recognition, and reports improvements in accuracy over ML-trained and MMI-trained models. Features of the implementation include the use of an algorithm called the Roadmap algorithm which selects the most important Gaussians for a given i...
متن کاملConnectionist ’viterbi Training: a New Hybrid Method for Continuous Speech Recognition
these procedures are well suited to speech recognition applications, in which Hybrid methods which combine hidden Markov models (HMMs) and connectionist techniques take advantage of what are. believed to be the strong points of each of the two approaches: the powerful discrimination-based learning of connectionist networks and the time-alignment capability of HMMs. Connectionist Viterbi Trainin...
متن کاملRoles of Pre-Training and Fine-Tuning in Context-Dependent DBN-HMMs for Real-World Speech Recognition
Recently, deep learning techniques have been successfully applied to automatic speech recognition tasks -first to phonetic recognition with context-independent deep belief network (DBN) hidden Markov models (HMMs) and later to large vocabulary continuous speech recognition using context-dependent (CD) DBN-HMMs. In this paper, we report our most recent experiments designed to understand the role...
متن کاملImproved discriminative training techniques for large vocabulary continuous speech recognition
This paper investigates the use of discriminative training techniques for large vocabulary speech recogntion with training datasets up to 265 hours. Techniques for improving lattice-based Maximum Mutual Information Estimation (MMIE) training are described and compared to Frame Discrimination (FD). An objective function which is an interpolation of MMIE and standard Maximum Likelihood Estimation...
متن کاملComparison of Tied-Mixture and State-Clustered HMMs with Respect to Recognition Performance and Training Method
Tied-mixture HMMs have been proposed as the acoustic model for large-vocabulary continuous speech recognition and have yielded promising results. They share base-distribution and provide more flexibility in choosing the degree of tying than state-clustered HMMs. However, it is unclear which acoustic models to superior to the other under the same training data. Moreover, LBG algorithm and EM alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999